
A Survey on Quantum Computer Simulators
Zakaria Abdelmoiz Dahi ‡§, Enrique Alba †, Rodrigo Gil-Merino ‡, Francisco Chicano † and Gabriel Luque †

‡ Department Lenguajes y Ciencias de la Computacion, E.T.S.I. Informática, University of Malaga, Spain
† ITIS Software, Edificio Ada Byron, University of Malaga, Spain,
§ Department IFA, Faculty NTIC, Constantine 2 University, Algeria

zakaria.dahi@{uma.es, univ-constantine2.dz}, {eat, chicano, gabriel}@lcc.uma.es, gilmerino@uma.es

Abstract—Quantum computers are unique systems based on
peculiar properties from quantum physics, such as entangle-
ment and superposition that allow them to provide unique
computational performances. Quantum computing is meant to be
revolutionary in many senses and fields. Some quantum machines
have already been devised, but their accessibility or affordability
to large commercialisation is yet to come. Meanwhile, a consistent
plethora of quantum computer simulators are provided for
users to run quantum programs on classical machines. These
same programs could be later also executed in real quantum
computers. This promising alternative allows practitioners to get
beyond this impasse and evolve research in quantum techniques’
design. Nonetheless, simulators differ from one another in many
overwhelming aspects that harden classifying and profiling them
and also choosing the most adequate one given a specific applica-
tion purpose, programming or quantum computing paradigms.
Considering these facts, our work presents a literature review of
the existing quantum computer simulators. As far as we know,
we are the first to perform such literature review: analyse and
include 149 simulators in it and consider up to 10 comparison
metrics including 21 programming languages/frameworks and
also web, desktop and hybrid simulators. Our work offers
several contributions by: 1) providing a clear and encompassing
repository that will allow users making appropriate choices of
simulators, 2) providing the research community with an up-to-
date listing of advances in quantum computer simulation and 3)
opening new perspectives on how to build better future quantum
computer simulators.

Index Terms—Quantum Computer Simulators, Quantum
Computing, Quantum Computers.

I. INTRODUCTION

Quantum computers are computationally-empowered sys-
tems that take advantage of unique features such as entangle-
ment and superposition provided by quantum mechanics [5].
They are expected to make a shift in software engineering and
also deliver computational advances with endless applications
[1]. Their use is awaited to be ground-breaking in so many
ways. Not long ago real-world quantum machines did not
exist yet and still up till today, the existing ones are either
not affordable or not accessible at all for regular users (e.g.
Sycamore QPU [1]). Considering that there is a paramount
need for devising techniques that unleash quantum machines’
power, as an alternative, while waiting for large and com-
mercial quantum computers, classical computers capacities are
being leveraged to simulate quantum computers with the help
of Quantum Computer Simulators (QCS) [3]. Nonetheless,
one should not confuse QCSs with quantum simulators like
those described by Richard Feynman [2], which are real
quantum systems. Also, one should bear in mind that QCSs

can run quantum programs, like real quantum devices do, but
they might run into limits such as memory and computation
time [1].

Nowadays, a substantial variety of QCSs exist, where each
one differs in several aspects (e.g. open accessibility, quantum
system and language paradigms, number of qubits, etc.). Such
massive configurations’ variety poses several problems for
picking the most adequate QCS considering a given constraint
(e.g. application purpose) and also allowing the research
community to keep track of the advances made in this field
so as to evolve towards better future QCSs. To the best of
the authors’ knowledge, no work has reviewed QCSs with
enough depth to afford the previous challenges. Nonetheless,
one could mention the work done in [3] that dedicates a
section to QCSs, although that work did not target QCSs. In
addition, another interesting listing of QCSs can be found on
the internet (1,2), but they are simple enumerations of QCSs
not providing any in-depth technical details or classification
methodology. Moreover, it provides a deprecated listing of
QCSs that does not exist any more and whom the affili-
ated projects have been shutdown (e.g. Fraunhofer QCS,
GQC, Quantum Walks, etc.) or even for those still active
(e.g. Davy Wybiral) or inactive (e.g. VirtualQC), the
provided links are incorrect or not working. Moreover, some
QCSs are even programming languages (e.g. Q-gol, LanQ,
QCL, QWIRE, QASM, Quipper, etc.), so one wonder if they
should be classified as QCSs. Finally, some QCSs are said to
be GUI-based, while actually, much more are. Also, it might
happen that the same QCS is cited with new and old versions
(e.g. Quantum Fog).

In our work we provide a comprehensive taxonomy by
considering a substantial set of QCSs, various sets of com-
parison metrics that are important and relevant to QCSs’
engineering. Technically, we conduct a systematic and en-
compassing literature review of the QCSs advances [4]. This
is done by classifying and analysing the existing QCSs. We
consider the aforementioned listings as a partial building-
bricks of our work. Our contributions stands in being the first
to 1) dedicate a complete work to profiling QCSs, including
149 QCSs and 2) consider up to 10 comparison metrics,
21 programming languages/frameworks and web, desktop and
hybrid simulators.

1QCSs List (1): https://quantiki.org/wiki/list-qc-simulators
2QCSs List (2): https://qosf.org/project list/

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 939

The remainder of the paper is as follows. In Section II,
we provide some definitions and nomenclature to be used
throughout our survey. Section III introduces the taxonomy
and analysis of the reviewed QCSs. Sections IV and V present
some final thoughts and suggestions to build better future
QCSs and also list interesting application domains to be
explored. Finally, Section VI concludes our paper.

II. NOMENCLATURE AND SELECTION CRITERIA

The quantum computing field contains a number of terms
that are referring to different concepts, but that could, in some
cases, be confused with each other. We can cite particularly
quantum simulators, quantum computer simulators, and quan-
tum programming languages. Making such distinction turns to
be quite important particularly when looking at the quantum
technology and software stacks given in [6]. Thus, in order to
help introduce a clear and coherent nomenclature to be used
in the literature, and also ease the understanding of our work,
we will define here and we encourage future definitions of the
three previously-cited terms to avoid any words’ misuse.

We also present, in this section, the main criteria we applied
to decide if a QCS should (or not) be included in our review.

A. Definitions

In this section, we present the definitions of quantum
simulators, programming languages and computer simulators.

Definition 1: Quantum Simulators (QSs) are sometimes
referred to as a quantum computing paradigm but techni-
cally they are task-dedicated quantum computing devices by
themselves for studying a given aspect such as the model of
quantum many-body mechanics. As an example of QSs, we
could cite those pointed in Feynman’s work [3].

Definition 2: Quantum Programming Languages (QPLs)
are, in general, the set of languages that are based on classical
programming paradigms (e.g. procedural, functional, multi-
paradigm, etc.) or new ones (e.g. quantum-object, circuit-
based, etc.) for quantum-related applications [7].

Definition 3: quantum computer simulators are, unlike
quantum simulators, software that leverages classical comput-
ers to simulate quantum computers. The QCSs can be seen
as a set of software layers that empowers the simulation of
real quantum devices such as quantum simulators and this via
quantum programming languages [3].

B. QS vs QPL vs QCS

Regarding the above-cited explanations, our work is about
quantum computer simulators and not on QSs nor QPLs.
Although the three might overlap in some cases, they should
not be confused nor interchangeably used even if some works
do it by making debatable statements. Indeed, works such
as [7] states that quantum simulators cannot replace quan-
tum programming languages. Moreover, the authors classify
QuantumOptics.jl as a multi-paradigm quantum pro-
gramming language, but they refer to it as an open quantum
system, which is confusing. In addition, most QPLs reviewed
in their work are based on classical ones (e.g. Object-oriented

syntax, C and C++ compilers, etc.) and therefore it is not clear
how a QPL has (or not) been classified as quantum-material.
For example, the authors stated that Quantum Language
Q is “not a quantum programming language, but its library is
written in C++”, although they do classify it as a QPL. Finally,
they refer to LIQUi|> as a QPL, but it is actually a tool-suite
for quantum computing that eventually could include a QPL.

C. QCSs’ Sources, Inclusion and Exclusion Criteria

To the best of our knowledge, no guideline exists on what
are the components’/software layers (e.g. compiler, circuit
mapper/optimizer, etc.) of a typical QCS’s. Doing so go
beyond the scope of our paper. Also, even if most QCSs are
open source, no details are given about their constituents, how
they work, etc. So, as a first effort to review the existing QCSs,
we have set some preliminary general criteria to decide which
QCS should (or not) be included in our survey. Concretely,
we integrated all QCSs that:

• Have been used in research-related works (e.g. theses,
journal/conference papers, technical reports, etc.) or com-
monly cited in quantum-related resources (e.g. specialised
magazines, fora, etc.).

• Implement basic or advanced qubits’ manipulations.
• Implement basic or advanced gates’ applications.
• Can be used online, via a desktop installer, or both.
More efforts are needed to establish standards of QCSs to

have a clear definition of their essential components, workflow,
etc. This work is a first step towards a more fine-selected
QCSs and QCSs’ implementation norms. Also, we would like
to mention that most QCSs have not been included in officially
published works, so most of our resources and references will
be link-based (see Appendix A). The sources from where the
studied QCSs have been extracted are:

• Academic publishers: e.g. Springer, IEEE, Elsevier, etc.
• Quantum corporations: e.g. IBMQ, D-wave, etc.
• Code’s hosting platforms/pages: e.g. GitHub, personal

web pages, etc.
Using the above cited-criteria, we have analysed 149 QCSs

that we later filtered to 140 ones by neglecting those that we
judged are not actually QCSs. After this, we further filtered
the 140-QCSs-list to 100 QCSs by discarding all those who
are not currently accessible (links and projects non-existent).

III. COMPARISON CRITERIA AND TAXONOMY OF QCSS

In this section, we provide a review, analysis and tax-
onomy of 100 quantum computer simulators according to
10 comparison metrics. Three main families of QCSs are
analysed in our work: web-based, desktop-based and hybrid
(web-and-desktop-based) QCSs, where the first are online
web services delivering a QCS and the second are QCSs
that require offline pre-installation and execution without
internet connection. For all the QCSs’ classes, we per-
formed the taxonomy according to 8 metrics: Full-stack,
#Qubit(s), #Gate(s), #Shot(s), Application(s),
Project Status, Open Access and Open Source.

940 XIX Conferencia de la Asociación Española para la Inteligencia Artificial CAEPIA 20/21

These metrics are key features that are common, important,
application-dependent and rule most QCSs’ strengths and
applicability. In addition, for the desktop and hybrid QCSs, we
considered 2 additional comparison metrics: programming
languages and GUI-based (see Figure 1). We use 21
programming languages/frameworks during the classification
since it is the number we found after having extracted all
the desktop and hybrid QCSs we found. We did not include
the two supplementary metrics (language and GUI) for web-
based QCSs since several programming languages/frameworks
and APIs could be used simultaneously. One could use tools
such as wappalyzer3 to extract the languages involved
in building a given web-based QCS. In addition, the metric
GUI-based is not applicable to web-service-based QCSs.

Taxonomy levels: n° 1 , n° 2 , n° 3

Fig. 1. Taxonomy skeleton

The 10 comparison metrics we use, have been chosen to
reflect the QCSs simulation power, their accessibility and their
history of activity. The metric Full-stack indicates if the
QCS has been said (or not) to be a self-contained QCS.
#Qubit(s) represents the number of qubits that the QCS
provides. #Gate(s) represents the number of gates that can
be used. #Shot(s) gives the number of times the circuit
can be consecutively executed without being confronted to
a given limitation (e.g. token validity, free trial ends, etc.).
Application(s) tells us on whether the QCS is general-
purpose or it has been tailored for a given field of applica-
tion. Project Status reflects if contributions, updates and
efforts are still going in the project that supports the QCS.
Open Access indicates if the QCS is freely available (no
payment required) or accessible upon payment. GUI-based
indicates if the QCS includes a graphical-user interface or
not, and Open Source shows if the QCS’s code is freely
available. Language indicates what programming language
is used to implement the QCS. When reviewing the QCSs,
we faced three main obstacles: the links of some QCSs were
not working (non-existent), some QCSs could not be installed
due to bugs and incompatibilities, other QCSs have a code
that is too fuzzy and long to review. If the information could
not be obtained or confirmed, we indicate “Unknown”. Also,
we use “–” for the attributes of a QCS that is found non-
existent for a given reason. Indeed, most of the QCSs do
not provide tutorials, documentation or insight of their use
or implementation.

Figure 2 shows some statistics on the distribution of QCSs
according to the platform: web, desktop and hybrid, including
the programming languages they are based on. The bars’
colour represents a class or language. The 1st and 2nd bars

3Wappalyzer: https://www.wappalyzer.com/

of the same colour indicate how many QCSs are considered
before and after filtering, respectively. The latter is performed
considering the inclusion/exclusion criteria in Section II-C.
One can note that desktop-based are the most widely-spread
ones, followed by web-based and then hybrid QCSs. Regard-
ing desktop QCSs, those based on C, C# and C++ are the most
popular ones.

The QCSs’ list in Table II is organised per programming
language (those with more QCSs to those with the least), while
Tables I and III do not follow any ordering criterion. In Tables
I-III, grey-shaded cells represent the best QCS(s) according to
a given metric.

A. Web-based Quantum Computer Simulators

Table I represents the taxonomy of web-based QCSs, where
37.5% and 87.5% QCSs are open access and open source,
respectively. One can note that most QCSs are application-
tailored and also allow using a relatively high number of qubits
and gates, although no much information is provided on their
implementation. We also found that Quirk is among the top
web-based QCSs. It provides a clear graphical QCS, it is easy
to use via drag and drop functionality, it puts no limits on the
number of qubits or shots to be used, it provides a large set of
quantum gates, it provides both a video and written tutorials
on how to use the QCS and it is open source.

B. Desktop-based Quantum Computer Simulators

Table II regroups the taxonomy of desktop-based QCSs,
where 98.86%, 97.72% and 17.04% are open access, open
source and have GUI, respectively. Regarding C/C++ QCSs,
we found that QuEST is among the best QCSs because it
provides many qubits and gates to use, it has a substantial
written and video documentation and it does an efficient
leveraging of the machines’ CPU/RAM/network/GPU
capacities. As to Java-desktop-based QCSs, we find that
jQuantum is a promising simulator to use. Moving to
Python-based QCSs, one can state that Pyquil is an
interesting QCS to use considering the large plethora
of applications and documentations it provides. For the
remaining programming languages, it is hard to make firm
conclusions on the usefulness of one QCS rather than others
considering that not much information and insights (e.g.
number of qubits, gates, shots, etc.) are given about most
QCSs.

C. Hybrid Quantum Computer Simulators

Table III presents a taxonomy of hybrids QCSs, where
100%, 75% and 25% are open access, open source and
have GUI, respectively. All these QCSs provide substantial
documentation, quantum gates and qubits to be used that
suit both industrial and research purposes. Nonetheless, we
found that most hybrid QCSs are oriented towards fee-based
QCS-services, which restricts their use at some point. Also,
although we enumerate only QCSs, one should stress that
other actors of the QC community such as D-wave and
IonQ are more oriented towards fully-quantum devices rather

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 941

16

8
5 4

35

29

11 11

17

10 9 8

12

6
8

5 4 4
8

3 3 2 2 2 1 1
3

1 1 1 1 1 1 1 1 1 1 1 1 1
0

5

10

15

20

25

30

35

40

W
eb

-b
as

ed

Hybrid

C, C
an

d
C++

Pyth
on

Jav
a

M
ath

em
ati

ca

M
atl

ab
 O

cta
ve

Has
kell

 L
IS

P
Ju

lia

Unknown

Per
l P

HP

Jav
as

cri
pt

.N
ET

M
ap

le

M
ax

im
a

Rust
Sc

ala

OCam
l

F#

M
ulti

ple

Fig. 2. Some statistics about quantum computer simulators

TABLE I
TAXONOMY OF WEB-BASED QUANTUM COMPUTER SIMULATORS

QCS Name Full-stack #Qubit(s) #Gate(s) #Shot(s) Purpose(s) Project Status Open Access Open Source
Factor 15 Circuit Unknown 4 2 1 Shor’s Algorithm Unknown Yes No

Quantum Computing Playground Unknown 22 21 1 Shor’s and Grover’s Algorithms, etc. Unknown Yes Yes
Quantum Programming studio Unknown Unlimited 34 >= 1 Quantum circuit simulation Active Yes No

Davy Wybiral QCS Unknown 10 14 Unknown Qubits manipulations Unknown Yes Yes
Qubit Workbench Unknown Free: 4, Non-free: > 100 17 Free: > 9000, Non-free: Unknown Qubits manipulations Active Yes/No No

Quirk Unknown Unlimited 44 Unknown Multiple Unknown Yes Yes
Quantum Search Applet Unknown Unknown Unknown Unknown Shor’s algorithm Unknown Yes No

BackupBrain Unknown Unlimited 9 >= 1000 Quantum circuit simulation Active No No

than QCSs. Thus, they provide access to hybrid or quantum
devices/algorithms and this via both web and desktop toolkits.

IV. DESIRED FEATURES IN FUTURE QCS DESIGN

Considering Section III, it can be seen that each QCS (or
its category) has strengths and weaknesses. Thus, better QCSs
could be built by summing up the strengths and discarding
the weaknesses of all of them. We present here a set of
desired features that could achieve this by: 1) online vs
desktop accessibility, 2) interactions and manipulations, 3)
programming language paradigms, 4) quantum computing
paradigms, 5) full-stack QCSs and 6) software engineering
principles. Our suggestions can be expanded to further aspects
using more in-depth details. However, this goes beyond the
scope of this paper. Also, one should keep in mind that
future promising QCSs are yet to come such as cuQuantum
SDK of nvidia, which leverage GPU performances of classical
machines and also opens new perspectives in this axis.

A. Hybrid Accessibility and Execution Mode

Most QCSs provide one-handed and very constrained ac-
cessibility through webpages, while others require stand-
alone installations. In this case, hybrid QCSs (e.g. IBMQ
Experience) appear as a promising alternative that allows
users with no internet access to run their programs at any
moment using their personal machines, while users that have
no access to desktop QCSs could use online QCSs. Moreover,
synchronisation between both sides could allow users to switch
back-and-forth between online and desktop QCS.

B. Simplified Interaction and Manipulation

Quantum computing users have different backgrounds.
Thus, a QCS should provide manipulation tools that go with
the users’ profiles and expertise levels. For instance, providing

graphical online and desktop QCS’s features such as drag-and-
drop (e.g. IBMQ, QuWire, etc.) could help academics, students
and non-experts get familiar with quantum computing for
teaching purposes and this without the need of programming
skills. Also, automated circuit-based algorithm or automatic-
problem formulation could be useful as well to avoid novice
users getting too fast into technicality that might jeopardise
their use of the QCS.

C. Programming Language and Quantum System Paradigms

Quantum devices are based on paradigms that rule the way
they are used/executed. This ranges from problem formulation,
problem mapping, algorithm declaration, algorithm mapping,
quantum compilation and the used quantum simulator itself.
These aspects are more related to advanced users that wish
to control sophisticated aspects of the simulation. Therefore,
providing unified or a multi-paradigm QCS (e.g. QRBG) could
have several advantages such as the possibility of executing,
with a reasonable change, the quantum program on several
quantum computers supporting each a different paradigm.
Also, each QCS is based on a particular programming lan-
guage and paradigm. Thus, the variety of languages and
paradigms handled by a given QCS is also a key factor to
consider.

D. Full-stack Quantum Computer Simulator

Some QCSs emphasize on certain aspects and purposes
of quantum computing rather than others (e.g. optimisation
problem-solving, error correction, circuit optimisation, etc.).
Such specialisation greatly affects the way the QCS is designed
and also the range of its use. It is clear that the application
domains and purposes are too large to be all integrated into a
single QCS, but gathering the main functionalities could help
to unify the research efforts and further comparisons between

942 XIX Conferencia de la Asociación Española para la Inteligencia Artificial CAEPIA 20/21

TABLE II
TAXONOMY OF DESKTOP-BASED QUANTUM COMPUTER SIMULATORS

Language QCS Name Full-stack #Qubit(s) #Gate(s) #Shot(s) Purpose(s) Project Status Open Access Open Source GUI

C
,C

#
an

d
C

++

Intel Quantum Simulator (IQS, former qHiPSTER) Unknown > 2 > 4 Unknown Qubit’s manipulations, problem solving, etc. Active Yes Yes No
staq Yes Unknown Unknown >=1 Synthesis, transformation, optimization and compilation of Active Yes Yes No

QuEST Yes 45 29 >=1 Various Active Yes Yes No
Scaffold/ScaffCC No – – – – – Unknown Yes No

Qrack Unknown > 32 Unknown >=1 Quantum bit and gate simulator Active Yes Unknown No
QX Simulator Unknown > 17 18 >=1 Quantum circuit simulation Uknwon Yes Unknown Yes
Quantum++ Unknown 25 Unknown >=1 General–purpose quantum computing library Active Yes Yes No

QMDD Unknown Unknown Unknown >=1 Efficient representation and manipulation of quantum functionality Unknown Yes Unknown No
CHP Unknown Unknown 4 >=1 simulator of stabilizer circuits Inactive Yes Unknown No

libquantum (C) – Unknown 3 >=1 Quantum mechanics and quantum computing Inactive Yes Yes Yes
Q++ Unknown Unknown Unknown >=1 Simulating quantum computation Inactive Yes Yes Unknown

QCLib Unknown 20 Unknown >=1 Classical simulation of realistic quantum computations Inactive Yes Yes Unknown
QDD Unknown Unknown Unknown >=1 Shor’s Algorithm Unknown Yes Yes No

QGAME Unknown Unknown Unknown >=1 Quantum Algorithms Unknown Yes Yes Yes
qsims Unknown Unknown >= 2 >=1 Quantum computing in addressable optical lattices Inactive Yes Yes No

QTM simulator Unknown Unknown Unknown >=1 Quantum Turing Machine Simulator Inactive Yes Yes –
Quantum Computer Simulator Unknown Unknown Unknown >=1 Quantum computer simulator Unknown Yes Yes –

Quantum Construct (qC++) / New quantum toolkit Unknown Unknown Unknown >=1 Quantum mechanical toolkit and 3D viewer Unknown Yes Yes Yes
Quantum Network Computing Unknown Unknown Unknown >=1 Quantum computer simulations Unknown Yes Yes Unknown

Qubiter Unknown Unknown Unknown >=1 Quantum computer simulations Inactive Yes Yes No
QuCoSi Unknown Unknown Unknown >=1 Quantum computer simulations Unknown Yes Yes Unknown

QuIDDPro Unknown 40 Unknown >=1 Generic quantum simulation Inactive Yes No –
QWalk Unknown Unknown Unknown >=1 Simulator of quantum walks for one- and two-dimensional lattices Active Yes Yes Unknown

Shor’s Algorithm Simulation Unknown Unknown Unknown >=1 Shor’s and Grover’s algorithms Active Yes Yes Unknown
sqct-Single qubit circuit toolkit Unknown Unknown Unknown >=1 Exact and approximate synthesis of single qubit circuits Active Yes Yes No

JKQ–DDSIM Unknown > 4 Unknown > 1000 Quantum simulations Active Yes Yes No
QuIDE Unknown Unlimited 15 Quantum computer simulations. Inactive Yes Yes Yes

QSim / Qsimh Unknown >= 1 22 >= 1 Various Active Yes Yes No
SimQubit Unknown 32 12 >= 1 Various: algorithms, etc. Inactive Yes Yes Yes

Py
th

on

PyQuil /Forest Yes >=6 23 >=1 Various Active Yes No No
ProjectQ Yes >=22 >=9 >=1 Various Active Yes Yes No

PyQu Unknown Unknown Unknown Unknown Unknown Unknown Yes Yes No
QCircuits Unknown >=3 >=4 >=1 Various Active Yes Yes No
qitensor Unknown >=1 Unknown >=1 Study of quantum information and quantum computing Inactive Yes Yes No
QuaEC Unknown >=1 >=7 >=1 Quantum error correction and fault-tolerance Inactive Yes Yes No

Quantum Fog Unknown >=1 Unknown Unknown Quantum mechanical behavior Active Yes Yes Unknown
Qubiter Unknown >= 4 >=1 >=1 Quantum circuit simulation Active Yes Yes No
QuTiP Unknown >=3 32 >=1 Simulation fo dynamics of open quantum systems Inactive Yes Yes Unknown

sparse pauli Unknown Unknown Unknown Unknown large, sparse Pauli operators using pairs of sets Active Yes Yes Unknown
toqito Unknown Unknown Unknown Unknown Study quantum information: states, channels, and measurements. Active Yes Yes Unknown

Ja
va

Bloch Sphere Simulator Unknown Unknown Unknown Unknown Bloch Sphere Visualisation Inactive Yes No Yes
jQuantum Unknown 15 7 >=1 Quantum circuit simulations Active Yes Yes Yes

jSQ Unknown Unknown Unknown Unknown Quantum cryptography Inactive Yes Yes Unknown
LibQuantumJava (LQJ) Unknown 2048 >=1 Quantum computing simulation Active Yes Yes No

QuanSuite Unknown >= 1 >=1 >=1 Various application suite Unknown Yes Yes Unknown
qMIPS101 Unknown <22 10 >=1 MIPS and quantum circuit simulator Yes Yes Yes

QuSAnn (and Multiplexor Expander) Unknown Unknown Unknown Unknown Code generator for simulated annealing Unknown Yes Yes Unknown
Squankum Unknown Unknown Unknown Unknown Quantum circuit simulations Unknown Yes Yes Yes

Strange Unknown >=2 >=3 >=1 Creates Quantum Programs Active Yes Yes Yes
Linear Al Unknown >= 1 >= 2 >= 1 Quantum information processing Inactive Yes Yes Yes

M
at

he
m

at
ic

a

QDENSITY Unknown >=5 >=7 >=1 Teleportation, Shor’s and Grover’s algorithms Unknown Yes Yes Unknown
qmatrix Unknown Unknown Unknown Unknown Computation in quantum information theory Inactive Yes Yes Unknown

Quantum Unknown Unknown Unknown Unknown Various algorithms, applications, etc. Inactive Yes Yes Yes
QuantumUtils Unknown Unknown Unknown Unknown Various Active Yes Yes Unknown

Quantum Information Programs in Mathematica Unknown >=4 >=9 >=1 Quantum circuit simulation Inactive Yes Yes No
Quantum Turing Machine Simulator Unknown Unknown Unknown >=1 Quantum Turing Machine Active Yes Yes No

QuCalc Unknown Unknown Unknown >=1 Quantum circuit simulation and problem solving Inactive Yes Yes Unknown
QI Unknown Unknown Unknown >=1 Symbolic analysis of quantum states and operations Active Yes Yes Unknown

Matlab Octave

M-fun for QC Progs Unknown Unknown >=1 >=1 Various Active Yes Yes No
QC simulator Unknown Unknown Unknown Unknown Unknown Unknown No No Unknown

QETLAB Unknown >=1 Unknown >=1 Quantum entanglement theory Active Yes Yes Yes
QLib Unknown >=3 >=4 >=1 Various: entanglement, etc. Inactive Yes Yes No

Quantum Octave Unknown >=1 >=1 >=1 Various: Teleportation, Shor and Grover algorithms, etc. Active Yes Yes Unknown
Qubit4matlab Unknown >=20 >= 3 >=1 Quantum information/quantum optics Inactive Yes Yes Unknown

Haskell LISP

Quacee Unknown >=2 >=3 >=1 Quantum circuit simulation Active Yes Yes No
CS 20c Project Unknown Unknown Unknown >=1 Quantum Turing machine Inactive Yes Yes No

Haskell Simulator of Quantum Computer Unknown up to 100 >=4 >=1 Quantum circuit simulation Active Yes Yes No
QIO Unknown >=1 >=1 >=1 Quantum computation: algorithms, etc. Active Yes Yes Unknown
qchas Unknown >=1 8 >=1 Quantum Algorithms Active Yes Yes No

Ju
lia

QSWalk.jl Unknown Unknown Unknown >=1 High-performance analysis of quantum stochastic walks Active Yes Yes No
QuantumOptics.jl Unknown Unknown Unknown >=1 Various Active Yes Yes No

QuantumWalk Unknown Unknown Unknown >=1 Models of quantum continuous and discrete walks Active Yes Yes No
Yao.jl Unknown Unknown Unknown >=1 Empower quantum information simulation Active Yes Yes No

Unknown
QCAD Unknown 7 11 Unlimited Quantum circuit design Inactive Yes No Yes

Quantum Computer Emulator Unknown 16 >= 2 >= 1 Various: algorithms, hardware designs of quantum computers, etc. Active Yes No Yes
Q-Kit Unknown Unlimited 22 Unlimited Qunatum circuit simulation Active Yes No Yes

Perl PHP Quantum::Entanglement Unknown Unknown Unknown Unknown Shor’s algorithm Inactive Yes Yes Unknown
Quantum::Superpositions Unknown Unknown Unknown Unknown Unknown Inactive Yes Yes Unknown

Javascript quantum-circuit Unknown >= 20 49 >=1 Quantum circuit simulation Active Yes No No
jsqis Unknown Unknown Unknown Unknown Quantum circuit simulation Active Yes Yes No

.NET Quantum.NET Unknown Unknown Unknown >=1 Quantum circuit simulation Yes Yes No
Maple OpenQUACS Unknown Unknown Unknown >=1 General-purpose universal Quantum Computer Simulator Unknown Yes Yes No

Maxima Qinf Unknown Unknown Unknown >= 1 Various Active Yes Yes No
Rust QCGPU Unknown Unknown Unknown Unknown GPU accelerated simulation Active Yes Yes No
Scala VQS - Visual Quantum Simulator Unknown >=4 >=3 >=1 Schrödinger full state Quantum Simulator Active Yes Yes No

OCaml QOCS Unknown (limited) >= 1 >= 3 >= 1 Quantum circuit simulator: e.g. Shor’s algorithm Active Yes Yes No
F# LIQUiD Yes up to 30 >= 4 >= 1 Various: error correction, algorithms, etc. Active Yes Yes No

Multiple QRBGS Unknown Unknown Unknown Unknown Random number generation Unknown Yes No No

TABLE III
TAXONOMY OF HYBRID QUANTUM COMPUTER SIMULATORS

Language QCS Name Full-stack #Qubit(s) #Gate(s) #Shot(s) Purpose(s) Project Status Open Access Open Source GUI
Python Qiskit Yes Up to 5000 (specific) 26 8192 Various Active Yes Yes Online (Yes), Desktop (No)
Python SV1 Unknown Up to 34 Unknown Unlimited upon fees Various Active Yes (Limited) No No

Python/Q# QDK Yes Up to 30 >= 3 >= 1 Various Active Yes (Limited) Yes No
Python Cirq Unknown 20 internal and 30 external >= 27 >= 1 Various Active Yes Yes No

the works conducted in the field of quantum computing. In
this sense, a likely-to-be-generalised effort has already been
done in Terra, Aqua, Ignis and Aer packages.

E. Respect of the Software Engineering Principles

To the best of our knowledge, no quantum software engi-
neering principles have been devised yet, but still the QCSs

are based on classical software. Thus, it is paramount to apply
proper principles of software engineering. Indeed, authors in
[3], have stated that most open access quantum computing
software have not been devised in respect of software en-
gineering bases. Thus, efforts are encouraged so that future
QCSs will be built by considering such an important aspect.

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 943

V. FUTURE QCSS’ APPLICATION DOMAINS

Even if QCSs’ power is constrained by the machine they are
used on, they still can be applied to several domains. We can
cite as a first example, artificial intelligence and problems’
solving. This stands in devising new hybrid or quantum
algorithms that take advantage of the states’ superposition
and qubits’ entanglement to solve intractable optimisation
problems in various domains such as machine learning in
artificial intelligence.

As a second QCSs’ application, one could mention quantum
software engineering. This includes software testing, hybrid
quantum-classical software design, software quality assess-
ment and classical-to-quantum software migration [6]. Finally,
an interesting QCSs’ application domain is quantum machines’
design. This stands in evolving the design of quantum systems
so they can reach new milestones in quantum computation.
Many aspects such as quantum error correction, circuit opti-
misation and mapping, etc. are related to this axis.

VI. CONCLUSION

In this paper, we have conducted a systematic and compre-
hensive review of QCSs by I) considering 149 QCSs II)
performing a comparison over 10 metrics, III) including 21
programming languages/frameworks and IV) web, desktop
and hybrid simulators. Our work can be used to (1) make fast,
easy and adequate QCSs’ selection considering a given specific
application, (2) allow academics and research community to
keep an updated track of QCSs’ engineering advances and (3)
provide propositions for future QCSs’ design and applications.
We found that C and Python-based QCSs are the most spread,
where Quirk, QuEST, Pyquil and hybrid ones are among
the most promising QCSs to be used nowadays.

ACKNOWLEDGEMENTS

This research is partially funded by the Universidad de
Málaga, Consejerı́a de Economı́a y Conocimiento de la Junta
de Andaluı́a and FEDER: grant number UMA18-FEDERJA-
003 (PRECOG); Spanish Ministry of Science, Innovation and
Universities and FEDER: contract RTC-2017-6714-5 (Eco-
IoT); and TAILOR ICT-48 Network (No 952215) funded by
EU Horizon 2020 research and innovation programme.

REFERENCES

[1] ARUTE, F., ARYA, K., BABBUSH, R., AND ET AL. Quantum supremacy
using a programmable superconducting processor. Nature 574 (October
2019), 505–510.

[2] FEYNMAN, R. Simulating physics with computers. International Journal
of Theoretical Physics volume 21 (June 1982), 467–488.

[3] FINGERHUTH, M., BABEJ, T., AND WITTEK, P. Open source software
in quantum computing. PLOS ONE 13, 12 (Dec 2018), e0208561.

[4] PAUL, R. ACM SIGSOFT empirical standards version 0.1.0.
[5] PEDNAULT, E., GUNNELS, J. A., NANNICINI, G., HORESH, L., AND

WISNIEFF, R. Leveraging secondary storage to simulate deep 54-qubit
sycamore circuits, 2019.

[6] PIATTINI, M., SERRANO, M., PEREZ-CASTILLO, R., PETERSEN, G.,
AND HEVIA, J. L. Toward a quantum software engineering. IT
Professional 23, 1 (2021), 62–66.

[7] SUNITA, G., MARYAM, G., AND AMIR, A. Quantum programming
language: A systematic review of research topic and top cited languages.
Archives of Computational Methods in Engineering volume 28 (December
2021), 289–310.

APPENDIX

This appendix includes the links to the QCSs we have
analysed in our work. The links are organised per class (web,
desktop and hybrid) and further by programming languages.
The QCSs order is the same as they appear in Tables I-III.
The list is also maintained online to keep it updated on the
long term (see final link in the table).

TABLE IV
QUANTUM COMPUTER SIMULATORS’ LINKS

Language QCSs’ Link according to QCS order
Web-based

–

http://web.archive.org/web/20051214071130/http://www.isi.edu/acal/quantum/simulate.html
http://www.quantumplayground.net/#/home

https://davywybiral.blogspot.com/2012/12/quantum--circuit--simulator.html
https://elyah.io/product

https://algassert.com/quirk#circuit={\%22cols\%22:[]}
https://joanv.me/qucomp/qucompApplet.html

https://backupbrain.github.io/quantum-compiler-simulator/
https://quantum-circuit.com/docs,https://quantastica.com/

Desktop-based

C
,C

#
an

d
C

++

https://github.com/iqusoft/intel-qs
https://github.com/softwareqinc/staq

https://quest.qtechtheory.org/
https://github.com/epiqc/ScaffCC

https://vm6502q.readthedocs.io/en/latest/index.html
http://quantum-studio.net/

https://github.com/softwareQinc/qpp
http://www.informatik.uni-bremen.de/agra/eng/qmdd.php

https://www.scottaaronson.com/chp/
http://www.libquantum.de/

http://sourceforge.net/projects/qplusplus/
https://www.quantware.ups-tlse.fr/QWLIB/
http://thegreves.com/david/QDD/qdd.html

http://faculty.hampshire.edu/lspector/qgame.html
http://qsims.sourceforge.net/

http://web.archive.org/web/20050923134721/http://www.lri.fr/∼durr/Attic/qtm/
http://www-imai.is.s.u-tokyo.ac.jp/∼tokunaga/QCS/simulator.html

https://sourceforge.net/projects/qcplusplus/
https://sourceforge.net/projects/qnc/
http://www.ar-tiste.com/qubiter.html

https://sourceforge.net/projects/qucosi/
http://vlsicad.eecs.umich.edu/Quantum/qp/

http://www.cos.ufrj.br/∼franklin/qwalk/
https://quantum-algorithms.herokuapp.com/

https://github.com/vadym-kl/sqct
https://github.com/iic-jku/ddsim

http://www.quide.eu/
https://github.com/quantumlib/qsim

https://sourceforge.net/projects/simqubit/

Py
th

on

https://pyquil-docs.rigetti.com/en/stable/start.html
http://projectq.ch/

https://code.google.com/archive/p/pyqu/
http://www.awebb.info/qcircuits/index.html

http://stahlke.org/dan/qitensor/
http://www.cgranade.com/python-quaec/

https://github.com/artiste-qb-net/quantum-fog
https://github.com/artiste-qb-net/qubiter

http://qutip.org/
https://github.com/bcriger/sparse pauli

https://vprusso.github.io/toqito/

Ja
va

https://eecs.ceas.uc.edu/∼cahaymm/blochsphere/
http://jquantum.sourceforge.net/

https://sourceforge.net/projects/simu-quantique/
https://github.com/gbanegas/libQuantumJava

http://www.ar-tiste.com/QuanSuite.html
http://institucional.us.es/qmipsmaster/
http://www.ar-tiste.com/qusann.html
http://jeffwass.github.io/Squankum/

https://github.com/redfx-quantum/strange
http://linearal.sourceforge.net/#Home

M
at

he
m

at
ic

a

http://www.pitt.edu/∼tabakin/QDENSITY/
https://library.wolfram.com/infocenter/MathSource/1893/

http://homepage.cem.itesm.mx/lgomez/quantum/index.htm
https://github.com/QuantumUtils/quantum-utils-mathematica

https://quantum.phys.cmu.edu/QPM/
https://github.com/sdiemert/QTMSim

https://library.wolfram.com/infocenter/MathSource/657/
https://github.com/iitis/qi

Matlab Octave

http://www.ar-tiste.com/m-fun/m-fun-index.html
http://www-m3.ma.tum.de/Software/QCWebHome

http://www.qetlab.com/Main Page
https://www.tau.ac.il/∼quantum/qlib/qlib.html

https://github.com/iitis/quantum-octave
http://bird.szfki.kfki.hu/∼toth/qubit4matlab.html

Haskell LISP

https://github.com/kat31416/quacee
http://web.archive.org/web/20011207175140/www.cs.caltech.edu/∼thoth/code.html

http://web.archive.org/web/20010803034527/http://www.numeric-quest.com/haskell/QuantumComputer.html
http://hackage.haskell.org/package/QIO

https://hackage.haskell.org/package/qchas

Ju
lia

https://github.com/iitis/QSWalk.jl
https://qojulia.org/

https://github.com/iitis/QuantumWalk.jl
https://github.com/QuantumBFS/Yao.jl

Unknown
http://qcad.osdn.jp/

http://www.compphys.org/QCE/
https://sites.google.com/view/quantum-kit/home

Perl PhP https://metacpan.org/release/AJGOUGH/Quantum-Entanglement-0.32
https://metacpan.org/release/LEMBARK/Quantum-Superpositions-2.02

JavaScript https://www.npmjs.com/package/quantum-circuit
https://github.com/garrison/jsqis

.NET https://github.com/phbaudin/quantum-computing
Maple http://web.archive.org/web/20060116174553/http://userpages.umbc.edu/∼cmccub1/quacs/quacs.html

Maxima https://github.com/jlapeyre/qinf
Rust https://qcgpu.github.io/
Scala https://github.com/gmenier/VisualQuantumSimulator/wiki/Introduction

OCaml https://github.com/dillanchang/QOCS
F# https://tinyurl.com/Liquid-qcs

Multiple http://random.irb.hr/
Hybrid

–

https://quantum-computing.ibm.com/
https://aws.amazon.com/fr/braket/

https://azure.microsoft.com/fr-fr/resources/development-kit/quantum-computing/
https://quantumai.google/cirq

Permanent Link to QCSs’ List
https://github.com/Zakaria-Dahi/QCSs-List.git

944 XIX Conferencia de la Asociación Española para la Inteligencia Artificial CAEPIA 20/21

